
Code Reviewing in the Trenches: Understanding
Challenges and Best Practices

Laura MacLeod
Microsoft

Michaela Greiler
Microsoft

Margaret-Anne Storey
University of Victoria

Christian Bird
Microsoft Research

Jacek Czerwonka
Microsoft

1. INTRODUCTION
Code review is a software practice that is widely adopted

by and adapted to open source and industrial projects. Code
review practices have been researched extensively, with most
studies relying on trace data from tool reviews, augmented
by surveys and interviews in a few cases. Several recent
industrial research studies—in addition to blog posts and
white papers—have exposed additional insights on code re-
viewing “from the trenches”.

Unfortunately, the lessons learned about code reviewing
are widely dispersed and poorly summarized by existing lit-
erature. In particular, practitioners wishing to adopt or re-
flect on a new or existing code review process may find it
difficult to know which challenges to expect and which best
practices to adopt for their specific development context.

Building on the existing literature, we add insights from a
recent large-scale study of the code review practices of Mi-
crosoft developers to summarize the challenges faced by
code change authors and reviewers, suggest best practices
for code reviewing, and mention trade-offs that practition-
ers should consider.

2. CODE REVIEW STUDY
To understand code review processes, researchers gener-

ally focus on a retrospective analysis of code review trace
data (e.g., CodeFlow [1], GitHub pull requests [2], and emails [3]).
But some researchers have conducted interviews and/or sur-
veys [2, 4] to reveal motivations and the challenges faced
during code review. Bacchelli and Bird [1] further inter-
viewed developers while they performed code reviews.

To gain a more in-depth understanding of the human and
social factors that drive code review in a large industrial
context, we observed and interviewed several teams at Mi-
crosoft. We complemented this with a survey to validate
our initial findings about tools use, developer motivations,
and the challenges faced with a broader set of developers.
The survey was distributed to 4,300 developers and received

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOODSTOCK ’97 El Paso, Texas USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

911 responses. Figure 1 summarizes the respondents’ demo-
graphics.

For ethnographic style observations, we sat with four Mi-
crosoft teams for one week each to directly observe their
code reviewing activities. The teams were comprised of new
developers, senior developers, and team leads working on a
range of projects—from new software to legacy systems—
and a mix of internal and external products. We conducted
semi-structured contextual interviews with 18 different de-
velopers from these four teams, either during or shortly af-
ter they performed a code review activity (bringing situated
insights). Our observations of their code review activities
allowed us to reveal cultural and social issues. Together
with the interviews, we gained an understanding of how the
teams approached code reviews and what policies they used.

This article comprises the main findings and lessons learned
from our study that may be of interest to practitioners.
A companion technical academic report [5] provides details
about the observations, interviews, and surveys.

Code review at Microsoft
Our survey and observations reveal that Microsoft’s devel-
opers recognize the value of code reviews and feel it is an
important activity. Developers appreciate reviewer feedback
and are more thorough when they know their code is going
to be reviewed. Whether they are a code author or reviewer,
the process also helps them become more confident. Inter-
estingly, not all teams have explicit rules or policies around
code reviews and code review policies vary. Still, teams at
Microsoft share a common code review life cycle that in-
cludes the following steps:

• Preparation of the code to be reviewed (by the au-
thor).

• Selection of reviewers (automatically or manually),
with varying requirements for who should be selected
and how.

• Notification of the selected reviewers as well as other
stakeholders, with team policy dictating who should
be informed and how.

• Feedback provided by reviewers to authors and other
stakeholders.

• Iteration involving communication between the au-
thor and reviewer and further work by both.

• Check-in of the code change to the target system (in
some teams, this happens before review).

These steps are performed by all teams, but the order can
vary slightly depending on a team’s policies, culture, and
tools. A vast majority of engineers use an internal code
review tool called CodeFlow [1]. This tool also supports
and guides engineers through the reviewing steps. The most
typical review cycle starts with the preparation of the code
change by the code author. The author then selects the
reviewer(s) (with some tool support) and the tool sends au-
tomatic notifications to selected reviewers. The reviewers
then give feedback on the code change and a feedback no-
tification is sent to the author. The author can then react
on the received feedback and may iterate over the change.
At some point, the author and the reviewer will be satis-
fied with the change and the change can be checked into the
code base, or it will be rejected. Most communication be-
tween author and reviewer occurs through the code review
tool, but other communication channels, such as face-to-face
discussions, whiteboard sessions, video and voice chats, and
IM, are used for contentious issue (i.e., issues that might re-
flect badly on someone) or to ensure a fast response. Almost
all teams require a review before code can be checked in—a
few teams allow exceptions, especially for trivial changes.

Microsoft engineers perform code reviews to improve code,
find defects, transfer knowledge, explore alternative solu-
tions, improve the development process, avoid build breaks,
increase team awareness, share code ownership, and to as-
sess the team (see Figure 1).

3. CODE REVIEWING CHALLENGES
Our interviewees and survey respondents reported a num-

ber of challenges (see bottom half of Fig. 1) which we discuss
from two perspectives: the author of code to be reviewed,
and the reviewer providing feedback. Organizational chal-
lenges are discussed in Section 5 as they mainly concern
trade-offs that must be made. Some of those challenges are
also reported by other researchers [6, 7, 8, 9] as discussed in
our companion report.

Challenges faced by code change authors
Authors of code changes discussed how it’s hard getting
feedback in a timely manner. The survey respondents
listed this as their top code reviewing challenge.

“Usually you write up some code and then you
send it out for review, and then about a day later
you ping them to remind them... and then about
half a day later you go to their office and knock
on their door.” (Participant 7)

Another challenge concerned obtaining insightful feed-
back on code. Five interviewees mentioned that review-
ers sometimes focus on insignificant details rather than
looking for larger issues.

“There is a lot of style [comments] a lot of the
time, which I find annoying. And people will be
like, Maybe you should use this name?” (Partic-
ipant 7)

Participants mentioned that it’s difficult finding appro-
priate or willing reviewers. And interviewees said that
knowing who to ask is challenging as well. Figure 1: Overview of selected responses from the

code review survey.

When preparing for a review, interviewees said they are
unsure how to document changes for review. It was
interesting that less than one third of respondents reported
writing descriptions of the change when they prepared code
for review, but that many more recognize it should be done
more often and more thoroughly.

Some interviewees noted that receiving a rejection can
be harsh and that they prefer being given a reason why
a change is rejected. Others also noted that the feedback
and discussion around code review is ephemeral and not
easy to refer to later, especially if they use communication
channels such as face-to-face rather than a code reviewing
tool that maintains a history of discussions.

Richer channels may be preferred when trying to reach
consensus about next steps, though some discussed how it
can be tough managing multiple communication chan-
nels.

Some of our interviewees also stated that tooling slows
down code velocity and tools should be modified to better
suit the team’s context, workflow, and policies.

Challenges faced by code reviewers
Our code reviewers said they struggle with large reviews.

Participants discussed how it’s hard finding time to per-
form all the code reviews requested of them, as well as un-
derstanding the code’s purpose, the motivations for
the change, and how the change was implemented.
For code changes that are large and difficult to understand,
one developer expressed frustration around the value of his
review:

“It’s just this big incomprehensible mess... then
you can’t add any value because they are just
going to explain it to you and you’re going to
parrot back what they say.” (Participant 13)

Related to comprehension, finding relevant documen-
tation about changes was another frequently reported chal-
lenge. One interviewee provided his thoughts on good doc-
umentation:

“Typically [a good code review] has a good de-
scription of what the problem was, what the solu-
tion is, and if it’s a big change, it has [documen-
tation explaining] what it’s doing and how it’s
integrated with everything else.” (Participant 4)

From our interviews, we also learned that understand-
ing the history of comments was an issue. Other chal-
lenges reported by survey respondents include a lack of
training on the review process itself, and that their review-
ing activities are perceived as not being valued enough.
Some mentioned that they lack insights into how their code
review activities impact job evaluations.

4. BEST PRACTICES
Our participants shared insights on how to avoid or mit-

igate some of the challenges they face. For example, one
participant shared how to get reviewer buy-in:

“Usually I try to get the person who I’m going to
have review the thing to actually sit down and
talk with them before I put out the code review”
(Participant 7)

We synthesized insights from our survey into best prac-
tices for code change authors, code reviewers, as well as
teams or organizations. These best practices are summa-
rized in Fig. 2, organized by the different phases of the code
review process (underlined below) and by stakeholder (au-
thor, reviewer, organization). Many of these best practices
(shown in bold) have been suggested by other researchers
who studied different development contexts, including open
source projects [1, 7, 10, 11].

Best practices for code change authors
To save reviewers time, while preparing a change for review,
authors should be conscientious and read through the
change thoroughly before sending it out for review. View-
ing changes in a code review tool can expose simple issues
(such as code style) to the author.

Authors should aim for small, incremental changes
that are be easier to understand. This is especially impor-
tant for novices whose understanding of the codebase can
be superficial. Furthermore, clustering related changes,
documenting the motivation for a change, and de-
scribing the change and how to approach the review
will help reviewers. Authors should also take time to test
their changes, and if no test exists, they should create one.
Running automated analysis tools can expose format-
ting and low-level issues that would otherwise waste review-
ers’ time.

Finally, code change authors should carefully consider
when to skip a review while referring to their organi-
zation’s code review policy (if one exists). Many survey
respondents suggested that reviews should be skipped for
small or trivial changes that do not change the logic of the
code, i.e., commenting or formatting issues, renaming of lo-
cal variables, or stylistic fixes.

Once code has been prepared for review, authors need to
select their reviewers. In particular, they need to carefully
decide how many reviewers are needed, consulting their
organization’s policy if needed. Similar to the findings by
Rigby et al., our study participants explicitly recommended
using two reviewers. It is important to Select appropri-
ate reviewers—authors may select based on code exper-
tise, they may select individuals who are responsible for the
code, or they may choose reviewers to build expertise. If
not against a team policy, it may be advisable to allow re-
viewers to volunteer for motivational reasons.

In addition, authors need to consider who to notify,
choosing people that will benefit from being exposed to the
code change and the resulting discussion, but they should
also decide who should NOT be informed. Reducing
the load for senior engineers was reported as an important
consideration in our study. We also found that notifying
potential reviewers in advance and explaining the up-
coming change could help achieve buy-in and speed up re-
views.

While responding to a review after their code has been
reviewed, authors should show gratitude to their re-
viewers and carefully consider their feedback in a respectful
manner. It is also important to promote ongoing dia-
log with the reviewers while tracking and confirming
problems are fixed after receiving feedback.

Finally, when it comes time to commit code changes, au-
thors should confirm that any decisions made are docu-
mented, and periodically reflect on the process as there

Figure 2: An overview of the best practices we suggest for authors of code changes, reviewers of changes,
and organizations. The diagram also shows the main steps of the code review life cycle.

may be ways to improve their process and how they interact
with their reviewers.

Best practices for code reviewers
There are several best practices for reviewers to consider
to help address the challenges they experience, but also to
address author challenges. Although reviewers find it hard
to find time to conduct their reviews, they should set ded-
icated but bounded time aside for reviewing, taking
enough time to carefully understand the code of each re-
view. Our participants also suggested that it is important
to review frequently but review fewer changes at a time.

To help authors, it is important to provide feedback as
soon as possible so that the authors will remember their
change. It is also important to focus on core issues first,
not wasting time on small problems at the expense of the
design or logic problems. We further suggest to create
and use a review checklist that is customized for the
project’s particular context.

While giving feedback on a review, reviewers should choose
communication channels carefully. Richer channels,
such as face-to-face or voice, are preferred for contentious is-
sues or for discussing complex code changes. While for non-
contentious or sensitive issues, tools that provide trace-
ability are preferred. It is also an important reviewing
skill to know how to give constructive and respectful
feedback while also clearly justifying and explaining
the reasons for rejecting a change.

Best practices for organizations to consider
Whether a product team or company, how an organization
sets the stage for reviewing activities and how it supports
and values code reviewing is critical to the success of code
reviews. We share the following quote from a participant to
motivate the importance of best practices for organizations:

“My team is currently pretty good with reviews,
but we do not review our process or talk about
the policies much at all. This means new people
have to learn it the hard way and probably means
there is a lack of consistency. This is a problem
in our team dynamic that I don’t think a tool
can fix. On my team, this type of discussion falls
into hygiene and I have to say, we are like street
people.” (Survey response to Q#34 - Entry 11)

To maximize the value of code reviews, an organization
should consider establishing a code review policy. Such
a policy should help in building a positive review cul-
ture that sets the tone for constructive review feedback and
discussion.

The organization should also consider how to ensure time
spent reviewing is “counted” and “expected” and is
seen as an important part of the development life cycle. But
the organization or team should watch for negative im-
pacts of employee assessment or incentives that may
be linked to code reviewing activities. While rewarding en-
gineers who spend considerable effort reviewing others’ code
is encouraged, penalizing engineers who do not (often with
a good reason) may lead to gaming of the system.

It is also important to ensure that appropriate tools
are used and that they match the desired reviewing cul-
ture and defined process (if there is one). Tools may sup-
port certain steps in the process, such as finding and notify-

Figure 3: Mapping suggested best practices to the
reported code reviewing challenges.

ing reviewers, automating feedback, running style checkers,
and testing. Reviewing tools should be lightweight and inte-
grate well with other developer tools, especially with infor-
mal communication channels. Distributed teams may have
additional tool needs. New tools for supporting code review-
ing activities are emerging all the time and an organization
may wish to stay abreast of these developments.

To address challenges concerning knowing the expected
process or how to use desired tools, an organization can en-
sure there is sufficient training in place. Informal training
through mentorship may be all that is required. Finally, an
organization should encourage all stakeholders to develop,
reflect on, and revise code reviewing policies and check-
lists. Organizations should continuously measure the impact
of the policies and tools used on their overall output (speed
of development, development efficiency, product quality, em-
ployee satisfaction); any discovered bottlenecks should be
resolved, e.g., a policy can help reduce notification overload
or define which reviews can be skipped.

5. TRADEOFFS TO CONSIDER WHEN AP-
PLYING BEST PRACTICES

The practices we suggest for authors, reviewers, and or-
ganizations may help address the challenges that emerged
from our study. In Fig. 3, we suggest which of the best
practices may help address particular challenges. For ex-
ample, authors that take time to carefully consider which
code changes really need a review (see best practice A1.6 in
Fig. 2) may save the reviewers’ time. However, we acknowl-
edge that not all of the practices may be applicable across
all development or project contexts and that some of these
practices may conflict with one another. Development teams
face unique resource, time, and scope constraints that influ-
ence the choice of workflow and practices used. We discuss
some of the inevitable trade-offs here.

When faced with time constraints, it may be necessary to
trade-off speed of the review over rigor. For a block-
ing change, a code review should be done quickly to avoid
impacting other developers’ work, but only if the change
does not impact a critical or consistently buggy part of the

system.
Rigid policies, such as always requiring two sign-offs or

execution of a complete test suite, can lead to long delays in
committing code. Developers, aware of the process burden,
might avoid making the change, or will bundle it with others,
causing reviews to become larger, less coherent, and harder
to review. However, lax or unclear policies might reduce
the value a team gets from code reviews.

Several trade-offs have to be considered when choosing
practices regarding reviewer selection. Getting feed-
back from experts and senior developers must be balanced
with several things. First of all, it may mean fewer opportu-
nities for junior team members to learn and be mentored or
fewer opportunities for knowledge dissemination while also
distracting the senior developers from directly working on
other coding tasks. Furthermore, requiring expert feedback
might also create delays due to a lack of reviewer availabil-
ity. Thus requesting less experienced reviewers can increase
review speed and balance the team’s workload. In terms
of whether reviewers volunteer or not, reviewers who volun-
teer may be motivated to do a good job, but in some cases it
may be more efficient to directly assign the review to experts
rather than waiting for experts to self-select.

It may be prudent to trade traceability of review ac-
tivities with richer communication channels. Partic-
ularly tense situations call for face-to-face discussions but
these discussions are hard to capture and are rarely docu-
mented. In some situations, recording every decision might
be required for legal compliance.

The policy and tools that promote awareness can lead
to notification overload. A developer may want to notify
a large group about a review, but overload leads to notifi-
cations being ignored. Likewise, the use of sophisticated
tooling may save or waste time. Tools can automate
some tedious tasks (e.g., check code formatting) but may in-
cur huge costs for configuration and familiarization, or may
even slow down processes (e.g., handling false positives of
static analysis tools). Automation in the tool chain increases
consistency but may lead to a feeling of loss of control.

In summary, the only way to manage these trade-offs is
to be aware of them, to search for additional trade-offs, and
to periodically evaluate not just workflow velocity and code
quality but also the impact the practices have on developer
satisfaction, personal goals, and team culture.

6. CONCLUDING REMARKS
Code review has been a popular research topic in the past

few years and it continues to be an ongoing topic of impor-
tance to practitioners and researchers. Through this article,
we aimed to gather insights from the dispersed research to
date and add findings from a large industrial study where
we closely observed and surveyed developers that author or
review code changes. We presented the key challenges faced
by authors and reviewers of code changes, and provided a
number of suggested best practices for authors, reviewers,
and organizations to consider that may alleviate these chal-
lenges. We discuss the inevitable trade-offs practitioners
may face. We hope that these insights will be useful to re-
searchers and practitioners alike as new tools, processes, and
research emerge from our community.

Acknowledgments
We thank our study participants, the CodeFlow team for
their input on our research designs, and Cassandra Petra-
chenko for editing our paper.

7. REFERENCES

[1] A. Bacchelli and C. Bird, “Expectations, outcomes,
and challenges of modern code review,” in Proceedings
of the 2013 international conference on software
engineering. IEEE Press, 2013, pp. 712–721.

[2] G. Gousios, M. Pinzger, and A. v. Deursen, “An
exploratory study of the pull-based software
development model,” in Proceedings of the 36th
International Conference on Software Engineering.
ACM, 2014, pp. 345–355.

[3] P. Rigby, B. Cleary, F. Painchaud, M. Storey, and
D. German, “Contemporary peer review in action:
Lessons from open source development,” Software,
IEEE, vol. 29, no. 6, pp. 56–61, Nov 2012.

[4] V. K. Gurbani, A. Garvert, and J. D. Herbsleb, “A
case study of a corporate open source development
model,” in Proceedings of the 28th international
conference on Software engineering. ACM, 2006, pp.
472–481.

[5] M. Greiler et al., “Appendix to code reviewing in the
trenches: Understanding challenges, best practices and
tool needs,” Microsoft Corp., Tech. Rep.
MSR-TR-2016-27, May 2016, (http://research.
microsoft.com/apps/pubs/default.aspx?id=266476).
[Online]. Available: http://research.microsoft.com/
apps/pubs/default.aspx?id=266476

[6] P. Thongtanunam, R. G. Kula, A. E. C. Cruz,
N. Yoshida, and H. Iida, “Improving code review
effectiveness through reviewer recommendations,” in
Proceedings of the 7th International Workshop on
Cooperative and Human Aspects of Software
Engineering (CHASE), 2014, pp. 119–122.

[7] P. C. Rigby and C. Bird, “Convergent contemporary
software peer review practices,” in Proceedings of the
2013 9th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE), 2013, pp. 202–212.

[8] M. Barnett, C. Bird, J. Brunet, and S. Lahiri,
“Helping developers help themselves: Automatic
decomposition of code review changesets.”

[9] Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim, “How
do software engineers understand code changes?: an
exploratory study in industry,” in Proceedings of the
ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering. ACM, 2012,
p. 51.

[10] J. Cohen, E. Brown, B. DuRette, and S. Teleki, Best
kept secrets of peer code review. Smart Bear, 2006.

[11] M. Petre and G. Wilson, “Code review for and by
scientists,” arXiv preprint arXiv:1407.5648, 2014.

8. AUTHOR BIOS

http://research.microsoft.com/apps/pubs/default.aspx?id=266476
http://research.microsoft.com/apps/pubs/default.aspx?id=266476
http://research.microsoft.com/apps/pubs/default.aspx?id=266476
http://research.microsoft.com/apps/pubs/default.aspx?id=266476

Laura MacLeod is program manager at Microsoft.

Michaela Greiler works as software engineer at Microsoft.

Margaret-Anne Storey is a Professor at the University
of Victoria.

Christian Bird is a researcher at Microsoft Research.

Jacek Czerwonka works as a lead engineer at Microsoft.

	Introduction
	Code Review Study
	Code Reviewing Challenges
	Best Practices
	Tradeoffs to consider when applying best practices
	Concluding Remarks
	References
	Author Bios

